Concepciones Teóricas sobre la Naturaleza de la Luz

Los antiguos filósofos ya conocían algunos hechos sobre la naturaleza y propagación de la luz. Así se atribuye a Euclides el descubrimiento de las leyes de la reflexión de la luz (300 años a.C.). Pero es a mediados del siglo XVII cuando aparecen casi conjuntamente dos teorías acerca de la naturaleza de la luz. El genial científico inglés Isaac Newton, en la segunda mitad del siglo XVII, y su compatriota contemporáneo Christian Huygens, desarrollaron la óptica y la teoría acerca de la naturaleza de la luz.


Teoria Corpuscular



La teoría corpuscular estudia la luz como si se tratase de un torrente de partículas sin carga y sin masa llamadas fotones, capaces de portar todas las formas de radiación electromagnética. Esta interpretación resurgió debido a que, la luz, en sus interacciones con la materia, intercambia energía sólo en cantidades discretas (múltiplas de un valor mínimo) de energía denominadas cuantos. Este hecho es difícil de combinar con la idea de que la energía de la luz se emita en forma de ondas, pero es fácilmente visualizado en términos de corpúsculos de luz o fotones.


Existen tres efectos que demuestran el carácter corpuscular de la luz. Según el orden histórico, el primer efecto que no se pudo explicar por la concepción ondulatoria de la luz fue la radiación del cuerpo negro.
Un cuerpo negro es un radiador teóricamente perfecto que absorbe toda la luz que incide en él y por eso, cuando se calienta se convierte en un emisor ideal de radiación térmica, que permite estudiar con claridad el proceso de intercambio de energía entre radiación y materia. La distribución de frecuencias observadas de la radiación emitida por la caja a una temperatura de la cavidad dada, no se correspondía con las predicciones teóricas de la física clásica. Para poder explicarlo, Max Planck, al comienzo del siglo XX, postuló que para ser descrita correctamente, se tenía que asumir que la luz de frecuencia ν es absorbida por múltiplos enteros de un cuanto de energía igual a hν, donde h es una constante física universal llamada Constante de Planck.





En 1905, Albert Einstein utilizó la teoría cuántica recién desarrollada por Planck para explicar otro fenómeno no comprendido por la física clásica: el efecto fotoeléctrico. Este efecto consiste en que cuando un rayo monocromático de radiación electromagnética ilumina la superficie de un sólido (y, a veces, la de un líquido), se desprenden electrones en un fenómeno conocido como fotoemisión o efecto fotoeléctrico externo. Estos electrones poseen una energía cinética que puede ser medida electrónicamente con un colector con carga negativa conectado a la superficie emisora. No se podía entender que la emisión de los llamados "fotoelectrones" fuese inmediata e independiente de la intensidad del rayo. Eran incluso capaces de salir despedidos con intensidades extremadamente bajas, lo que excluía la posibilidad de que la superficie acumulase de alguna forma la energía suficiente para disparar los electrones. Además, el número de electrones era proporcional a la intensidad del rayo incidente. Einstein demostró que el efecto fotoeléctrico podía ser explicado asumiendo que la luz incidente estaba formada de fotones de energía hν, parte de esta energía hν0 se utilizaba para romper las fuerzas que unían el electrón con la materia, el resto de la energía aparecía como la energía cinética de los electrones emitidos:



donde m es la masa del electrón, vmáx la velocidad máxima observada, ν es la frecuencia de la luz iluminante y ν0 es la frecuencia umbral característica del sólido emisor.
La demostración final fue aportada por Arthur Compton que observó como al hacer incidir rayos X sobre elementos ligeros, estos se dispersaban con menor energía y además se desprendían electrones (fenómeno posteriormente denominado en su honor como efecto Compton). Compton, ayudándose de las teorías anteriores, le dio una explicación satisfactoria al problema tratando la luz como partículas que chocan elásticamente con los electrones como dos bolas de billar. El fotón, corpúsculo de luz, golpea al electrón: el electrón sale disparado con una parte de la energía del fotón y el fotón refleja su menor energía en su frecuencia. Las direcciones relativas en las que salen despedidos ambos están de acuerdo con los cálculos que utilizan la conservación de la energía y el momento.
Otro fenómeno que demuestra la teoría corpuscular es la presión luminica .



Teoria Ondulatoria


Esta teoría considera que la luz es una onda electromagnética, consistente en un campo eléctrico que varía en el tiempo generando a su vez un campo magnético y viceversa, ya que los campos eléctricos variables generan campos magnéticos (ley de Ampère) y los campos magnéticos variables generan campos eléctricos (ley de Faraday). De esta forma, la onda se autopropaga indefinidamente a través del espacio, con campos magnéticos y eléctricos generándose continuamente. Estas ondas electromagnéticas son sinusoidales, con los campos eléctrico y magnético perpendiculares entre sí y respecto a la dirección de propagación















Fenomenos Ondulatorios

Algunos de los fenómenos más importantes de la luz se pueden comprender fácilmente si se considera que tiene un comportamiento ondulatorio.
El principio de superposición de ondas nos permite explicar el fenómeno de la interferencia: si juntamos en el mismo lugar dos ondas con la misma longitud de onda y amplitud, si están en fase (las crestas de las ondas coinciden) formarán una interferencia constructiva y la intensidad de la onda resultante será máxima e igual a dos veces la amplitud de las ondas que la conforman. Si están desfasadas, habrá un punto donde el desfase sea máximo (la cresta de la onda coincida exactamente con un valle) formándose una interferencia destructiva, anulándose la onda. El experimento de Young, con sus rendijas, nos permite obtener dos focos de luz de la misma longitud de onda y amplitud, creando un patrón de interferencias sobre una pantalla.
Las ondas cambian su dirección de propagación al cruzar un obstáculo puntiagudo o al pasar por una abertura estrecha. Como recoge el principio de Fresnel - Huygens, cada punto de un frente de ondas es un emisor de un nuevo frente de ondas que se propagan en todas las direcciones. La suma de todos los nuevos frentes de ondas hacen que la perturbación se siga propagando en la dirección original. Sin embargo, si por medio de una rendija o de un obstáculo puntiagudo, se separa uno o unos pocos de los nuevos emisores de ondas, predominará la nueva dirección de propagación frente a la original.









La difracción de la luz se explica fácilmente si se tiene en cuenta este efecto exclusivo de las ondas. La refracción, también se puede explicar utilizando este principio, teniendo en cuenta que los nuevos frentes de onda generados en el nuevo medio, no se transmitirán con la misma velocidad que en el anterior medio, generando una distorsión en la dirección de propagación:








Otro fenómeno de la luz fácilmente identificable con su naturaleza ondulatoria es la polarización. La luz no polarizada está compuesta por ondas que vibran en todos los ángulos, al llegar a un medio polarizador, sólo las ondas que vibran en un ángulo determinado consiguen atravesar el medio, al poner otro polarizador a continuación, si el ángulo que deja pasar el medio coincide con el ángulo de vibración de la onda, la luz pasará íntegra, si no sólo una parte pasará hasta llegar a un ángulo de 90º entre los dos polarizadores, donde no pasará nada de luz.
Este efecto, además, permite demostrar el carácter transversal de la luz (sus ondas vibran en dirección perpendicular a la dirección de propagación).
El efecto Faraday y el cálculo de la velocidad de la luz, c, a partir de constantes eléctricas (permitividad, ) y magnéticas (permeabilidad, μ0) por parte de la teoría de Maxwell:

confirman que las ondas de las que está compuesta la luz son de naturaleza electromagnética. Esta teoría fue capaz, también, de eliminar la principal objeción a la teoría ondulatoria de la luz, que era encontrar la manera de que las ondas se trasladasen sin un medio material.

Teoria Electromagnetica

Si bien en la capítulo 04 de este ensayo nos referiremos a ella con una relativa extensión, cuando hablemos del electromagnetismo, aquí podemos señalar sucintamente que fue desarrollada por quien es considerado el más imaginativo de los físicos teóricos del siglo XIX, nos referimos a James Clerk Maxwell (1831-1879). Este físico inglés dio en 1865 a los descubrimientos, que anteriormente había realizado el genial autodidacta Michael Faraday, el andamiaje matemático y logró reunir los fenómenos ópticos y electromagnéticos hasta entonces identificados dentro del marco de una teoría de reconocida hermosura y de acabada estructura. En la descripción que hace de su propuesta, Maxwell propugna que cada cambio del campo eléctrico engendra en su proximidad un campo magnético, e inversamente cada variación del campo magnético origina uno eléctrico. Dado que las acciones eléctricas se propagan con velocidad finita de punto a punto, se podrán concebir los cambios periódicos - cambios en dirección e intensidad - de un campo eléctrico como una propagación de ondas. Tales ondas eléctricas están necesariamente acompañadas por ondas magnéticas indisolublemente ligadas a ellas. Los dos campos, eléctrico y magnético, periódicamente variables, están constantemente perpendiculares entre sí y a la dirección común de su propagación. Son, pues, ondas transversales semejantes a las de la luz. Por otra parte, las ondas electromagnéticas se transmiten, como se puede deducir de las investigaciones de Weber y Kohlrausch, con la misma velocidad que la luz. De esta doble analogía, y haciendo gala de una espectacular volada especulativa Maxwell termina concluyendo que la luz consiste en una perturbación electromagnética que se propaga en el éter. Ondas eléctricas y ondas luminosas son fenómenos idénticos.
Veinte años más tarde, Heinrich Hertz (1857-1894) comprueba que las ondas hertzianas de origen electromagnético tienen las mismas propiedades que las ondas luminosas, estableciendo con ello, definitivamente, la identidad de ambos fenómenos.
Hertz, en 1888, logró producir ondas por medios exclusivamente eléctricos y, a su vez, demostrar que estas ondas poseen todas las características de la luz visible, con la única diferencia de que las longitudes de sus ondas son manifiestamente mayores. Ello, deja en evidencia que las ondas eléctricas se dejan refractar, reflejar y polarizar, y que su velocidad de propagación es igual a la de la luz. La propuesta de Maxwell quedaba confirmada: ¡la existencia de las ondas electromagnéticas era una realidad inequívoca! Establecido lo anterior, sobre la factibilidad de transmitir oscilaciones eléctricas sin inalámbricas, se abrían las compuertas para que se produjera el desarrollo de una multiplicidad de inventivas que han jugado un rol significativo en la evolución de la naturaleza humana contemporánea.
Pero las investigaciones de Maxwell y Hertz no sólo se limitaron al ámbito de las utilizaciones prácticas, sino que también trajeron con ellas importantes consecuencias teóricas. Todas las radiaciones se revelaron de la misma índole física, diferenciándose solamente en la longitud de onda en la cual se producen. Su escala comienza con las largas ondas hertzianas y, pasando por la luz visible, se llegan a la de los rayos ultravioletas, los rayos X, los radiactivos, y los rayos cósmicos.
Ahora, la teoría electromagnética de Maxwell, pese a su belleza, comporta debilidades, ya que deja sin explicación fenómenos tan evidentes como la absorción o emisión; el fotoeléctrico, y la emisión de luz por cuerpos incandescentes. En consecuencia, pasado el entusiasmo inicial, fue necesario para los físicos, como los hizo Planck en 1900, retomar la teoría corpuscular. Pero la salida al dilema que presentaban las diferentes teorías sobre la naturaleza de la luz, empezó a tomar forma en 1895 en la mente de un estudiante de dieciséis años, Albert Einstein, que en el año 1905, en un ensayo publicado en el prestigioso periódico alemán Anales de la física, abre el camino para eliminar la dicotomía que existía sobre las consideraciones que se hacían sobre la luz al introducir el principio que más tarde se haría famoso como relatividad.



La Naturaleza de laLuz


Son tantas las razones que se pueden invocar para avalar nuestras palabras introductorias sobre la luz que es un trabajo difícil la elección de un ejemplo cuya descripción pueda sintetizar los alcances que ha tenido y tiene para el desarrollo, evolución y comprensión de las teorías de la física y sus leyes. Muchas veces, y durante procesos de aplicación de leyes que funcionan, la particular naturaleza de la luz suele conducir a emocionantes descubrimientos físicos, nuevos y no directamente relacionados con la ley misma. Un ejemplo antiguo de ello tiene que ver con la ley universal de la gravedad y los satélites de Júpiter. En el siglo XVII el astrónomo danés Ole Roemer observó el movimiento de las lunas de Júpiter y advirtió un hecho curioso. En determinado momento del año, las lunas reaparecían por detrás de Júpiter más o menos cuatro minutos antes de lo que podría esperarse si se aplicara de manera directa la ley de Newton. Seis meses después, las lunas aparecen cuatro minutos más tarde. Roemer dedujo que ésta no era una falla de la ley en cuestión, sino más bien una indicación de que la luz viaja a una velocidad finita. Recuérdese aquí que la luz atraviesa la distancia entre la Tierra y el Sol en aproximadamente ocho minutos. Así, en un determinado momento del año, la Tierra está ocho "minutos-luz" más cerca de Júpiter de lo que está cuando se encuentra al otro lado de su órbita alrededor del Sol. Esto explica la diferencia de ocho minutos en la medición del tiempo de las órbitas de los satélites de Júpiter. De esta manera, Roemer pudo hacer una estimación exacta de la velocidad de la luz más de doscientos años antes de que se la midiera directamente. He colocado este ejemplo, únicamente con el objetivo de graficar la influencia de la luz para el quehacer, especialmente, de la física teórica y de la astronomía.